‌Research Area #2: Graphene Photonics

 

Towards Graphene-Integrated Photonic Circuits with Strained Graphene Devices


Recently, graphene has been identified as one of the strongest candidates for the realization of electronic-photonics integrated circuits (EPICs) owing to its excellent electronic and optical properties. These superior properties of graphene have allowed overcoming the performance barriers set by Si-based photonic devices for optical modulation. Unfortunately, however, the creation of graphene lasers–a key ingredient of graphene-based EPICs–has been considered extremely challenging, if not impossible, because of the gapless nature of graphene. 

Our group recently made a theoretical prediction towards the possibility of achieving population inversion and stimulated emission in strained graphene under giant pseudo-magnetic fields. We also made the first experimental demonstration about how one can create large and controllable energy gaps in graphene over a very large area using the concept of strain-induced pseudo-magnetic fields.
‌Our ultimate goal is to achieve the world’s thinnest and strongest light bulbs and lasers using strained graphene. With this achievement, we will aspire to integrate graphene lasers and other graphene-based optoelectronic devices into CMOS architecture to realize various disruptive technologies such as graphene-based optical computing chips.